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Landau levels in the presence of a potential barrier 

J M Ferreyrat and C R F’roetto 

8400 Bariloche, Argentina 

Received 14 April 1994 

Abstract. The exact solution to the problem of electrons under the combined effect of a square 
potential barrier and magnetic field p d l e l  to the interfaces has been obtained. Beyond the states 
assodated with the presence or an isolated interface, a new family of solutions which arises from 
the interaction between the two interfaces has been found. Inclusion of non-parabolic effects 
leads to sizable corrections, and consequently they should be taken into mount in a reliable 
quantitative calculation. Under applied bias of typical strength, the eigenvalue specmm changes 
radically as compared with the zeroelectric-field results. 
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1. Introduetion 

The problem of one electron subject to the combined effects of a magnetic field 
and potential energy discontinuities, such as those given by the band offsets of 
semiconductor heterostructures, admits two extreme configurations: We magnetic field is 
either perpendicular or parallel to the interfaces. 

In the perpendicular configuration, and for the simplest case of a single isotropic 
parabolic conduction band, no coupling exists between the heterojunction potential along 
x ,  and the magnetic parabola in the y-z plane [l]. Accordingly, the essentid effect of 
the magnetic field is to quantize the degrees of freedom parallel to the interface, the total 
energy being just the sum of longitudinal (kinetic energy along x )  and transverse (bulk 
Landau level) components. 

When the magnetic field is applied parallel to the interfaces, a more complicated and 
interesting situation arises, as the total effective potential along x has contributions from 
both the potential energy discontinuities and the magnetic field. This coupling gives rise 
to an eigenvalue spectrum that shows a complex pattern. Previous theoretical studies of 
this problem were reshicted to the case of a single interface between two semi-infinite 
semiconductors 12-41, However, in the light of recent experiments [5] it seems worthwhile 
to generalize such calculations to the case of a finite barrier, where the magnetic length 
and barrier width can be of comparable magnitude. The aim of this work is to provide a 
detailed study of this case, including effective mass discontinuities, non-parabolic effects 
(not considered in any of the single-interface previous works), and the effect of .an electric 
field applied perpendicular to the interfaces. 

The rest of the paper is organized as follows. In section 2 the hecessary theoretical 
background is presented; in section 3 several simpler configurations are analytically analysed 
in the light of the general exact solution obtained in the previous section, and numerical 
results for the general case are presented. Finally, section 4 is devoted to  the conclusions. 
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2. Model and exact solution 

The physical system that we have in mind is an AI,Gal-,As potential barrier of height VO 
and width L along x ,  between two semi-infinite layers of GaAs; a magnetic field is applied 
along z ,  parallel to the interfaces between the two semiconductors. 

Within the framework of the envelope wavefunction approximation of the effective mass 
theory [6],  the behaviour of a conduction electron under the combined effect of potential 
energy discontinuities and magnetic fields is described by the Schradinger equation 
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H W )  = E W - )  (14 

with a Hamiltonian 

where mi = ml in the semi-infinite regions (x  c 0 , x  z L), and mi = m2 in the barrier 
region (0 c x < L), ml and m2 being the respective isotropic effective masses of the semi- 
infinite and barrier acting semiconductors, respectively. In writing (1) we have introduced 
the Landau vector potential A = (0, B x ,  0) to describe the magnetic field, and an electric 
field of strength F along x ;  e is the absolute value of the electron charge and 0 ( x )  the 
Heaviside step function. In principle, H should also include a term related to the spin 
Zeeman splitting; this will add a constant to the energy eigenvalues derived below. However, 
as this contribution is quite small compared with these energies (at most one per cent), we 
disregard it. 

Since the commutators [ p y .  HI = [pz, HI = 0, the solution of (1) can be written as the 
product of plane waves along y and z ,  times a function $ ( x )  which satisfies the following 
effective one-dimensional equation: 

eZBZ ) ( ;I hk;F 
2BZ 

(& + vo 0 [ x ( L  - X I 1  + - ( x - x ~ ) ~  $ ( x ) =  E---- 
2c2mi 

(2) 

with xi = xo + m;c2F/eB2, xo = -hkyc/eB being the zero electric field guiding-centre 
coordinate [7], and ks, kc the wave numbers of the plane wave motion in the y-z plane. 
For the homogeneous bulk configuration ml = m? = mo (mo being the conduction-band 
bottom effective mass of the semi-infinite layer) and VO = F = 0, the eigenenergies of (2 )  
are given by the well known Landau levels 

where o, = eB/moc is the cyclotron frequency. The associated eigenfunctions are the 
Hermite polynomials centred at xo [SI, which have appreciable amplitude in a region of 
width Eg, where E B  = is the magnetic length. 

It is important to realize that in the absence of effective mass discontinuities, barriers, 
and electric fields the eigenvalues given by (3) are independent of XO, giving rise to the 
well known degeneracy of the bulk Landau levels relative to this guiding-centre coordinate. 
However, as soon as the translational symmetry along x is lost. this degeneracy is lifted, 
and each eigenvalue of (2) becomes xo dependent. This is the problem that we want to 
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address in this work, for the particular case of a loss of translational symmetry due to the 
presence of a potential barrier. 

Using LY = f i ( x  -,q)/ZB, B = a ( x  - . Q ) / ~ B ,  and hw, as the unit of energy, equation 
(2) can be rewritten in the dimensionless form 

if < LYO -&I / l a  (zone 1) or 01 2 O ~ L  = d ( L  - x l ) / l ~  (zone In), and 

and uo = VO/hw,. The boundary condition O(x)  -+ 0 as x 3 f m  implies that we must 
seek solutions of (4a) which vanish as 01 -+ fm. The exact solution of (4a) and (4b) that 
satisfies this condition is a linear combination of the parabolic cylinder functions U and 
V [9] in each of the three zones 

where a = -ml&l/mo. b = --mz(&z - vo)/mo, and A, B,  C, D are coefficients to be 
determined from the remaining boundary and normalization conditions. 

Demanding continuity of the wavefunction at each interface, and using the boundary 
condition for the derivative of 4 which ensures the conservation of the probability current 
across each interface [IO, 1 I], we get a homogeneous system of four equations whose non- 
hivial solutions satisfy the following eigenvalue equation 

m:r( i  + b)U(a, -w)U(a, aL)[U'(b. Bo)U'(b, -Bd 
- U'@, -Po)U'@ Bd1 

- U'@, Bo)U(b, -BL)I 
+ U'@, -wJ)U@, ad[U'(b. BdU(b, -Po) - U@, &)U'@, - P L ) ~ }  
+ m$($ +b)U'(a, -ao)U'(a, aL)[U(b,  Bo)U(b, -BL) 
- BdU(b.  -Bo)] = 0. (7) 

The primes in (7) denote derivatives with respect to the second argument (excluding 
the sign) of the parabolic functions and the factor r($ + b) represents the gamma function 
of argument $ + b. The exact eigenvalue (7) is the main result of this work, and the 
next section will be devoted to a careful analytic and numerical analysis of its solutions. 
At this point we just want to point out that as is evident from the geometry of our 

+ m v " ( f  +b)IU(a, -O1a)U'(a, ud[U(b,  B&'(b, --BO) 
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system, the solutions should be invariant under the simultaneous change xo + L - xo 
and F + -F .  According to our definitions of cro, (YL, A, and BL this in turn implies 
EO + -a~, (YL --f -w, Bo --f +L, BL + -Bo. It is easily checked that (7) is 
invariant under this symmetry operation. No simplification is evident for the equal mass 
case ml = m2. 

Considering that the energies involved could be well above the conduction band 
minimum (this is particularly true for the semi-infinite layers), we have included non- 
parabolic effects in the analysis. Within our scheme of calculation, we found it convenient to 
introduce the non-parabolic effects by using an energy-dependent effective mass. Following 
Lassnig [12], we employ 
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2 
i = 1.2. 

2 

Table 1. Values of the parameters (all in eV) which enter the evaluation of the non-parabolic 
c m t i o n s  CO the effective mas [IZ]. 

Ni Mi N; Mi 
i = 1 (GAS)  1,519 1.860 3.140 2.969 
i = 2 (AloiGao,Asl 1.652 1.962 3.090 2.919 

This expression arises from a five-level IC . p theory for conduction band electrons in 
heterostructures, with the influence of the remaining energy bands included in the constant 
factor C,. For the particular case at hand, C,,, = -1.8 and the momentum matrix elements 
P,' and P,' take the values 28.9 eV and 6 eV, respectively. The values of the parameters 
Ni, Mi, N;, and M,! for GaAs ( i  = 1) and AI,Gal-,As (i = 2, x = 0.3) are given in table 1. 
It may easily be checked that for E = 0 (bottom of the GaAs conduction band) and for 
E = 0.248 eV (bottom of the Ab.sGao.7As conduction band), the effective masses m, (0) 
and m~(0.248eV) take the accepted values of 0.067mo and 0.086m0, respectively. The 
important point to realize is that for all the relevant energies, the non-parabolic effective 
masses given by (8) are heavier than their parabolic counterparts, the corrections being 
larger as E increases relative to the corresponding band-edge. 

The advantage of this treatment of non-parabolic effects lies in the fact that even in this 
case the eigenvalue equation is given by expression (7), but with the understanding that 
ml and mz should be obtained from the energy-dependent expression (8). This provides an 
additional energy contribution to (7) that can be handled without difficulty when searching 
for its numerical solutions. 

The practical evaluation of the parabolic cylinder functions U(u,  x )  and V ( a ,  x )  poses a 
difficult task, which we overcome by using a combination of ascending series and asymptotic 
expansions in the half-plane x > 0 [9]. The corresponding functions in the half-plane x < 0 
were obtained by reflection with respect to the U axis in the a-x plane. The Wronskian 
relation (see (10) below) satisfied by U(u ,x )  and V ( a , x )  proves quite useful in checking 
the accuracy of these expansions. 
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3. Analytic and numerical results 

Before proceeding with the detailed numerical solution of the eigenvalue (7). it is quite 
illuminating to analyse limiting and simpler configurations. For example, when L --f 0 
(vanishing small barrier width), a~ -+ ao, BL + 60 and the only term that survives in (7) 
is one proportional to mlm2. The factor may be rewritten as 

r(; +b)[u(a,  aO)~ ’ (a ,  -ao) - ~ ( a ,  -aoo)u’@, WO)] 
x [U@, Bo)U‘(b, -Bo) -U@, --Bo)U‘(b, Bo)] = 0. (9) 

This equation simplifies considerably by using the Wronskian relation 

satisfied by U(a, x )  and U@, - x )  [9]. Replacing (IO) in (9) we obtain 

so the eigenvalues are determined by the poles of r (1/2 + a). Remembering that the 
gamma function diverges when its argument is a negative integer (or zero), the eigenvalues 
are given by the condition 

= -n 1 ml 
2 mo 

which, using (5). implies 

as corresponds to the levels of a free electron gas in crossed electric and magnetic fields. 
Note the lifting of the xg degeneracy due to the electric field breaking of the translational 
symmetry, and also that when F = 0, (12) reduces to the result given by (3). This limit 
justifies the presence of the common factor r(1/2 + 6 )  in (9) (and in (7)): while the 
gamma function has no zeros and consequently adds no solutions to (9). its presence is 
important in cancelling divergences in the denominator that otherwise would give rise to 
spurious solutions. In a very similar way one finds that an equivalent result is obtained 
when analysing the case ml = m2 and VO -+ 0 of (7). 

As a final example, we now study the limit L -? CO of (7). From the asymptotic 
expansions of U(a ,aL) ,  U(b,  BL). U(b, -@L)  and their derivatives when a‘, @r -+ CO [9], 
it is easy to see that the only remaining terms of (7) are those in which there appears a 
product of the type U(a,  a~)U’(b,  -BL) or U’@, a ~ ) U ( b ,  - p ~ ) .  Collecting these terms 
we obtain 

(m: + m l m ~ ) U ( a ,  -ao)U’(b, Bo) - (mi fmlm2)Ll’(a, -ao)U(b, Bo) = 0 (13) 

as the eigenvalue equation for the L -+ CO limit of non-interacting interfaces. Taking 
m, = m2, equation (13) reduces to the result obtained i n  [2,3], while the particular case 
mljmz = 0.7 was studied in [4]. 
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- 3 - 2 - 1  0 1 2  3 4 5 6 7 8 9 1 0  

%I [B 
Figure 1. Lowesf eigenvalues (dotted curves) as a function of the guiding-cenw coordinate 
xg for a banier width LIlB = 7, with the left (right) interface at X / B  = 0 (7); ug = 4 and 
mt Jm2 = 1. Four parabolas (full curves) divide this energy-orbit centre phase space into several 
regions, with a different physical process taking place inside each of them. The processes are 
explained in the text The broken curve corresponds to the effective potential felt by an elecwon 
with xg = L/2 (barrier centre); note that for this curve. the upper horizontal axis should be 
used. 

0 X l l ,  L 

- 3 - 2 - 1 0 1 2 3 4 5 6 7  

%I 1, 
Figure 2. Same a figure 1, but for a barrier width Lila = 4; the leR (right) interface lies at 
x / b  = 0 (4). The effective potential (broken c w e )  corresponds to xg = 3LJ4. 

Turning to the numerical results, we show in figures 1-3 the lowest eigenvalues 
E,(x~/~B) of (7) as functions of x o l l s  (dotted curves), for the simplest case mz/ml = 1, 
F = 0, and L / ~ B  = 7, 4 and 1, respectively. Unless otherwise stated, the potential 
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....................... 

-3 -2 -1 0 1 2 3 4 
XaILs 

Figure 3. Same as figure 1. but for a banier width Ll ls  = 1. and interfaces at x j l s  = 0 and 
1. The effective potential (broken curve) corresponds to xo = L. 

barrier height uo = 4 in this work. From the relation Vo/liw, = 4, with VO = 0.248eV 
we obtain hoc = 0.062eV and consequently B U_ 35T, a rather high but not physically 
unrealistic magnetic field 1131. This energy-orbit centre phase space is divided into several 
regions by the four parabolas xi /2 l i  (full curves) centred at the bottom and top of the two 
interfaces. The complex pattern shown by the eigenvalues is a consequence of the fact that 
a different type of physical process is operative inside each region. To understand this, 
we have superimposed on the almost uncoupled interface results of figure 1 the effective 
potential (broken curve) felt by an electron when xo is at the barrier centre L/2. Clearly, 
the range of energies between 0 and uo is forbidden (region 1); when the energy is between 
uo and (L/28)’/2 the existence of barrier bulk Landau levels is possible (region 2), and for 
energies greater than range (L/UB)’/2 but lower than (L/2iB)’/2+th3 interface levels from 
the left interact with interface levels from the right mediated by levels inside the barrier 
zone (region 6).  

Other regions can be understood from the results for the intermediatecoupled interfaces 
of figure 2, where the effective potential corresponds to xo = 3L/4. The forbidden region 
now extends between 0 and (L/41~)’/2, but between this energy and uo the electrons feel 
an edge potential only and we have the interface states (region 3). In the narrow range 
between uo and uo -t (L/41s)’/Z the interaction between interface states and levels in the 
barrier is possible (region 4). Note that this region (and the interference mentioned above) 
is quite prominent in figure 1. For energies larger than uo + (L/41~)’/2 but smaller than 
u~+(3L/41s)’/Z (region 7) interface levels from the left interact with levels given essentially 
by the mixing of interface and barrier states at the right interface. For even higher energies, 
region 9, we obtain a complicated interference of levels above the barrier, with a strong 
coupling between the two interfaces. 

Figure 3 corresponds to the case L/ls = 1 of strong-coupled interfaces. From the 
effective potential felt by the electrons when no is just at the right interface, it is easy to see 
that the situation is quite favourable for quantum-mechanical tunnelling from an interface 
state from the left to a right interface state at approximately the same energy; this~defines 
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the interface-interface region 8. 
It should he pointed out here that regions 1-5 correspond to physical processes where 

only one interface is involved, and have already been identified in [3]. On the other hand, 
in regions 6-9 both interfaces are involved, and obviously these states were absent from 
the previous studies. The importance of these processes increases when the ratio L l l ~  
decreases, as can be seen clearly from the increasing size of the interface-interface against 
single-interface regions as one moves from figure 1 to figure 3. 

Further insight into the different physical processes for each region is provided in 
figures 4-6, where the three lowest normalized eigenfunctions are plotted, for L / ~ B  = 
7.4 and 1, respectively. In each of these figures, the lower panel corresponds to xo = L/2 
(barrier centre), while the upper panel to the case xo = 0 (left interface). 

3 M Ferreyra and C R Pmetto 

- n.0 1.4 

... 
4 - 2 4  0 1 2  3 4 5 6 7 8 9 1 0  

X l l ,  
Figure 4. Three lowest normalized squared eigenfunctions for the barrier of figure 1, with 
XQ = 0 (upper panel) and XQ = LJ2 (lower panel). The upper panel has been shifted upwards 
to avoid superpasition. 

According to the energy-orbit centre phase space of figure 1, the two lowest barrier- 
centre eigenfunctions should be close to bulk Landau orbitals, while the third level must 
exhibit some contribution from the interfaces. This is qualitatively supported by the lower 
panel of figure 4, where the three eigenfunctions look quite similar to the three lowest 
solutions of the onedimensional harmonic oscillator. Note, however, that the n = 2 
eigenfunction almost reaches the interfaces, and consequently the bulk Landau level is barely 
defined, as can be seen from figure 1. The upper panel, corresponding to the xo = 0 three 
lowest eigenfunctions, shows how a well defined interface level (n = 0) evolves towards 
a reflection interference level (n = 2, region 5 in figure 1) with a sizable probability of 
finding the electron in the barrier region. 

Quite different is the situation shown in the lower panel of figure 5, as compared with 
the equivalent barrier-centre eigenfunctions of the previous case. The well defined bulk 
Landau levels, with almost all the weight in the barrier region, have been replaced by 
interface states connected by tunnelling below and above the barrier (regions 8 and 6 of 
figure 2, respectively). Note, however, that the n = 2 wavefunction still has an appreciable 
probability of being at the barrier, which explains the fact that Ez(L/218) takes a value close 
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-3 -2 I o 1 2 3 4 
X l l a  

Figure 6. Three lowest normalized squared eigenfunctions for the barrier of figure 3, with 
xo = 0 (upper panel), and IO = LIZ (lower panel). 

to 4.5, the eigenvalue corresponding to a bulk Landau level in the barrier. No important 
difference could be observed between the upper panels of figures 4 and 5, as in both cases 
these states are in the non-interacting interface region of their respective energy-orbit m&e 
phase space. 

The situation changes again radically for the thinner barrier with L/Zs = 1, as shown 
in figure 6. For both xo = 0 and L / 2  we are in the interfaceinterface region mediated 
by tunnelling below the barrier (region 8) of figure 3. This is seen clearly from the lower 
panel, where the probability is strongly peaked close to the interfaces, with a much smaller 
probability at the barrier centre (this is particularly true for the two lowest eigenstates). 



6632 

From the upper panel, however, it is evident that when these eigenfunctions are inside 
region 8, and far from the anticrossing points, the eigenfunctions are essentially interface 
levels on the left (n = 0 and 2). or interface levels on the right (n = 1). It is quite 
noticeable that keeping the orbit centre parameter xo constant at one interface, one can 
obtain a wavefunction localized at the opposite interface just by changing the eigenvalue. 

J M Ferreyra and C R Proetto 

x l l ,  

Figure 7. Lowest eigenvalues as a function of the guiding-centre coordinate xo for a bvrier 
with L j l a  = 7. no = 4. Full thin c w e ,  energydependent effective masses; broken curve, 
m l / m ~  = 0.067j0.086. The upper horiwntal axis comesponds to the thick full curve, which 
repmenb the potential barrier. 

Figure 8. Same as figure 7 for a barrier with Llls = 4. 
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Once the qualitative behaviour of the complex pattern of figures 1-3 has been 
understood, we include non-parabolicity in the calculations. The results are shown in 
figure 7 for the c ~ s e  L / l B  = 7 and in figure. 8 for L / l s  = 4. The full curve corresponds 
to the energy-dependent effective masses given by (8), and the dotted curve to the constant 
ratio mj/m2 = 0.067/0.086 2: 0.78. 

A first feature to note from figures 7 and 8 is the decrease of the energy splitting between 
successive solutions, from about fiw, in the GaAs regions to about fiocml/mz (< hoc) in 
the AI,Gal-,As regions; this is particularly clear in the regions where bulk Landau levels 
are well defined. Note also that the non-parabolic levels lie always below the corresponding 
parabolic levels. This should be expected, as the energydependent effective masses of (8) 
are increasing functions of energy, and also from the m-' dependence of the Landau levels 
in each of the bulk materials. 

For a given solution, the importance of the non-parabolic corrections depends on its 
character (bulk Landau, interface, etc). Focusing on the lowest eigenvalue of figure 7, for 
example, the correction is negligible when - x o / l ~  >> 1 (far left) or (XO - L ) / l s  >> 1 (far 
right), where it behaves as a bulk Landau level. But when xo is at a distance of about la from 
any of the interfaces, and the level starts to behave as an interface state, the corrections are 
quite sizable. However, the correction again becomes negligible in the barrier region, as the 
electron is now very close to the bottom of the AI,Ga,,As conduction band, where non- 
parabolic effects are quite small. This should be contrasted with the behaviour of the lowest 
solution of figure 8, where the non-parabolic corrections are a maximum just at the barrier 
centre, as a result of the interface character of this state when xo = L/2. In both cases, 
for excited states the energy-dependent effective masses give sizable contributions over the 
whole range of XO. This explains the fact that, for a given energy range, there are many 
more non-parabolic solutions than parabolic ones (14 against nine solutions for xo = L / 2  
in figure 8, for instance). From the results, it is clear that non-parabolic corrections should 
be included in a reliable quantitative calculation of the perturbed Landau levels close to a 
square barrier. 

- 3 - 2 - 1 ' 0  1 2  3 4 5 6 7 
X O l L  

Figure 9. Zero-elecuic-field eigenvalues versus xo for a b&m with WO = 10 and Ll lB  
The thick full curve represents the potential barrier. 

= 4. 
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x / l .  

X O J l .  

Figure 10. Eigenvalues under applied bm for the M e r  of figure 9. The electric field strength 
F = 2.5Fo (Fo is defined in the text). Also shown are the two parabolas centred at the bottom 
of each interface, and the potential baniex under bias. 

All the results presented up to now were obtained in the absence of electric field effects; 
we give in figures 9 and 10 an example of the modifications introduced by an applied 
bias. The barrier height and width are uo = 10 and L / l s  = 4, and are typical for the 
experiments of [5 ] .  Figure 9 corresponds to the zero-electric-field case, and the results 
should be compared with figures 2 and 8, corresponding to barriers of similar width but 
smaller VO. Note the increased number of interface-interface states, as a consequence of the 
larger size of region 8, where these states exist. 

Defining the electric field unit from the relation eF& = Aw,, the results presented in 
figure 10 correspond to F = 2.5Fo. For a barrier with VO = 0.248eV. and from uo = 10, 
we obtain E 2 15T and FO LT 3.7 x leVcm-’ .  Keeping in mind that in most of the 
experiments the two semi-infinite layers are heavily doped with donor impurities, whose 
released electrons screen quite effectively the applied fields, we have assumed that all the 
bias drops at the potential barrier region. Self-consistent calculations for similar double- 
barrier tunnelling devices show that this is a good approximation 1141. For the particular 
field strength F = 2.5F0, the upper comer of the right interface lies at the same energy as 
the lower comer of the left interface. 

A comparison between figures 9 and 10 shows that in the presence of an applied bias, 
the left-interface states are ‘squeezed’ into a small region, while about half of the displayed 
spectra correspond now to right-interface states. Note, for example, that for xollr, = 4 
(right interface) one finds interface states above the upper comer of the barrier, while when 
F = 0, at energies above uo one finds region 5, corresponding to reflection-interference 
levels (see figure 2). The reason for this is obvious: by increasing F ,  the slope of the 
potential barrier (between 0 and L)  also increases, and it behaves as an effective interface, 
giving rise to an extended region of interface states. hecisely the opposite occurs at the 
left interface, where the triangular potential and its associated tunnelling transparency make 
this interface progressively lose the interface character. 
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4. Conclusions 

The exact eigenvalue equation for conduction electrons subject to potential barriers, 
magnetic field parallel to the interfaces, and applied bias along the growth direction, has 
been derived. Its solutions can be obtained analytically in several limiting and simpler 
cases, while the general case must be studied numerically. 

The solutions exhibit a complex pattern as a function of the guiding-centre coordinate, 
even in the simplest case of parabolic bands, equal semi-infinite layer and barrier effective 
masses and zero electric field. Beyond the states associated with the presence of an isolated 
interface, we have found a new family of solutions, which arises from the interaction 
between the two interfaces. The relevance of the latter soIutions increases when the ratio 
L / l a  between the barrier size and magnetic length decreases. The analysis is greatly 
simplified by drawing four parabolas (two at each interface, one at the bottom comer, 
one at the upper comer) which divide the energy-orbit centre phase space into several 
regions, each of which corresponds to a different physical process. The analysis of the 
exact wavefunctions also proves useful, as they give a real-space insight into the nature of 
the solutions. In particular, we have found that even when fixing the orbit centre parameter 
xo at one interface, it is possible to obtain a wavefunction quite localized at the opposite 
interface, just by changing the eigenvalues. 

Having acquired a qualitative understanding of the energy-orbit centre phase space, we 
included non-parabolic effects by using an energy-dependent effective mass; the corrections 
turned out to be important, particularly in the GaAs regions and for interface states. They 
should clearly be incorporated into any theoretical calculation aiming to provide reliable 
quantitative information on this problem. 

Under applied bias of typical strength, important changes of the eigenvalue spectra are 
obtained. The tilted potential barrier between 0 and L behaves effectively as an extended 
interface for right-interface states, while it behaves like a triangular barrier for the left- 
interface states. Accordingly, in the energy-guiding centre phase space under bias, the 
right-interface region increases, while the lefi-interface region decreases. 

A proper comparison with available experimental results on the perturbed Landau levels 
close to a GaAs barrier will require a calculation of the tunnelling current under applied 
bias [15-171, including self-consistent screening, effective mass discontinuities, and non- 
parabolic effects. Work in this direction is underway. 
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